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The EPR-silent species [Cu(L2)(TpPh)]+ exhibits a UV–VIS–
NIR spectrum that is very similar to that of active galactose
oxidase.

Galactose oxidase (‘GOase’) is a fungal enzyme that catalyses
the oxidation of primary alcohols by molecular oxygen.1 The
active site of GOase contains a [Cu(His)2(Tyr)2(OH2)] centre,
in which a basal tyrosinate ligand has been chemically modified
by an ortho-thioether crosslink formed from a cysteine residue,
and is involved in a p-stacking interaction with a neighbouring
tryptophan side chain.2 In active enzyme this modified
phenoxide ligand is oxidised to a very long-lived radical,3
whose oxidation potential is +0.40 V vs. NHE (compared to
+0.9 V for a ‘normal’ tyrosine side-chain). We describe here a
Cu(ii) phenoxide complex containing a thioether-substituted
phenoxide ligand, designed as a model for the GOase copper
complex, and the spectroscopic characterisation of its Cu(ii)
phenoxyl oxidation product.

2-Hydroxy-3-methylsulfanyl-5-methylbenzaldehyde (HL2)
was prepared from 2-hydroxy-5-methylbenzaldehyde (HL1)4

by the method of Wang and Stack.†5 Complexation of hydrated
Cu(BF4)2 by HL (HL = HL1, HL2) and K[TpPh] ([TpPh]2 =
tris-3-phenylpyrazolylborate)6 in CH2Cl2 at room temperature
affords dark green solutions, from which deep green micro-
crystals of [Cu(L)(TpPh)] ([L]2 = [L1]2, 1, [L]2 = [L2]2, 2)†
can be obtained in 40–45% yield after filtration and addition of
a large excess of hexanes. Weakly diffracting single crystals of
2 were grown from toluene–hexanes.‡ The structure shows a
square pyramidal Cu(ii) centre with a N3O2 donor set and
unexceptional metric parameters (Fig. 1).

The visible spectra of 1 and 2 in CH2Cl2 at 293 K each show
a d–d absorption at lmax = 685 nm (emax = 92–93 dm3 mol21

cm21). The X- and Q-band EPR spectra of 1 and 2 in 10 : 1
CH2Cl2–toluene solution at 110 K exhibit the g∑ > g4 > ge
pattern expected of a {dx2

2y2}1 or {dxy}1 Cu(ii) ion (for 1; g∑ =
2.284, g4 = 2.065, A∑{63,65Cu} = 160 G: for 2; g∑ = 2.286, g4
= 2.065, A∑{63,65Cu} = 163 G), only one species being
detected in solution for both compounds. These spectra are
consistent with 1 and 2 possessing essentially identical
tetragonal coordination spheres in CH2Cl2. Hence, in this
solvent the [L2]2 ligand in 2 is coordinated via both O-donors,
with no isomerisation to a form containing O,S-coordinated

[L2]2 taking place. While the lack of observable A{14N}
couplings for 1 and 2 prevents more detailed EPR studies, we
have recently proven that related [CuII(L)(TpPh)] (L = bi-
dentate ligand) complexes retain their square-pyramidal solid
state geometries upon dissolution in CH2Cl2.7 It is therefore
probable that the solution structures of 1 and 2 closely resemble
those in the crystal.

The cyclic voltammogram (CV) of 2 in CH2Cl2/0.5 M
NBun

4PF6 at 293 K shows a one-electron couple at E1⁄2 = +0.53
V vs. Fc–Fc+, which is chemically reversible for 10 mV s21 @

n @ 1 V s21 and which we assign to a [L2]2/L2· oxidation. The
observation of a chemically reversible oxidation for coordinated
[L2]2 in 2 is very unusual for a phenoxide without encumbering
tert-butyl substituents.8 The CV of 2 also exhibits an irreversi-
ble secondary oxidation of variable broadness and intensity
centered near Epa = + 0.85 V, which is characteristic of partial
adsorption of the initial oxidised species onto the Pt electrode;9
and an irreversible Cu(ii/i) reduction at Epc = 21.29 V with
associated daughter peaks at Epa = 20.41 and 20.11 V.

Electrooxidation of 2 in CH2Cl2–0.5 M NBun
4PF6 at 243 K at

a potential corresponding to the 2/[2]+ couple yields a brown
solution exhibiting only a very weak residual EPR signal from

Fig. 1 View of the complex molecule in the crystal of 2, showing the
disordered thioether group. For clarity, all H atoms have been omitted.
Selected distances (Å) and angles (°): Cu(1)–N(12) 2.337(6), Cu(1)–N(22)
2.009(6), Cu(1)–N(32) 1.996(7), Cu(1)–O(1) 1.941(7), Cu(1)–O(4)
1.967(5), N(12)–Cu(1)–N(22) 89.7(2), N(12)–Cu(1)–N(32) 90.0(2),
N(12)–Cu(1)–O(1) 102.8(2), N(12)–Cu(1)–O(4) 98.7(2), N(22)–Cu(1)–
N(32) 87.7(3), N(22)–Cu(1)–O(1) 91.5(3), N(22)–Cu(1)–O(4) 171.3(2),
N(32)–Cu(1)–O(1) 167.1(2), N(32)–Cu(1)–O(4) 89.9(2), O(1)–Cu(1)–O(4)
88.9(3).
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unreacted 2. A similar experiment using an optically transparent
electrode results in a blue-shift of the [L2]2-derived absorptions
in the UV, and the ingrowth of new peaks in the visible and
near-IR regions. The oxidised solution shows lmax = 317 nm
(emax ≈ 9 000 dm3 mol21 cm21), 419 (4400), 470 (sh), 725 (sh),
818 (sh), 907 (1200) and 1037 (1100) at 243 K (Fig. 2).
Rereduction of this solution at 0 V results in the near-
quantitative regeneration of 2. We ascribe these observations to
the generation of an EPR-silent [CuII(L2·)(TpPh)]+ species [2]+.
The 2/[2]+ preparative oxidation is not quite reversible, since
[2]+ decomposes with a half-life of ca. 10 h under these
conditions; the absorption coefficients quoted above may
therefore be slightly underestimated.

Other known Cu(ii) phenoxyl complexes, although usually
also EPR-silent, give electronic spectra significantly different
from [2]+, with peaks at lmax = 400–450 nm (emax =
3000–16 000 dm3 mol21 cm21) and 600–680 nm (300–8000).10

None of these examples contains a thioether side-chain to the
phenoxyl ligand, however. Active GOase exhibits two spectro-
scopic features attributable to the modified tyrosyl radical: a
peak at lmax = 444 nm (emax = 5200 dm3 mol21 cm21) and a
broad absorption between 600 and 1200 nm, centred at 800 nm
(3200) with several low- and high-wavelength shoulders.11 The
similarity of this spectrum to that shown by [2]+ (Fig. 2) is
striking. The VIS–NIR feature in the spectrum of GOase has
been attributed to an inter-ligand charge transfer process
between the tyrosyl and tyrosinate ligands.12 However, the
observation of an equivalent broad, structured band for [2]+,

which lacks a second phenoxide ligand, suggests that p?p*,
MLCT and/or LMCT transitions involving the tyrosyl radical
should also contribute to this absorption.
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Notes and references
† Correct analytical and NMR data were obtained for HL2. Analytical data
for the complexes. 1: Found: C, 59.7; H, 4.3; N, 11.5; Calc. for
C35H29BCuN6O2.CH2Cl2: C, 59.7; H, 4.3; N, 11.6 %. 2: Found: C, 63.0; H,
4.6; N, 13.4; Calc. for C36H31BCuN6O2S: C, 63.0; H, 4.6; N, 12.3 %.
‡ Crystal data for 2: C36H31BCuN6O2S, triclinic, space group P1̄, dark
green block, 0.30 3 0.25 3 0.20 mm, a = 12.536(8), b = 13.90(2), c =
9.760(4) Å, a = 99.00(7), b = 90.75(4), g = 102.48(9)°, U = 1638(3) Å3,
Z = 2, T = 150(2) K, m(Mo-Ka) = 0.773 mm21; Rigaku AFC7-R
diffractometer, 5405 measured reflections, 5126 independent, Rint =
0.0941; R(F) = 0.079, wR(F2) = 0.233, S = 1.076. The thioether methyl
C atom of the [L2]2 ligand was disordered over two sites C(49) and C(50)
in a 60:40 occupancy ratio, which were restrained to common S(1)–C(X)
and C(42)…C(X) (X = 49, 50) distances of 1.85(1) and 2.77(1) Å,
respectively. All non-H atoms except C(49) and C(50) were refined
anisotropically. CCDC 182/1047.
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Fig. 2 UV–VIS–NIR spectrum of [2]+ in CH2Cl2–0.5 M Bun
4NPF6 at 243

K.
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